
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADPO10675
TITLE: The Ruthless Pursuit of the Truth about

COTS

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Commercial Off-the-Shelf Products in

Defence Applications "The Ruthless Pursuit of
COTS" [l'Utilisation des produits vendus sur
etageres dans les applications militaires de
efense 1'TExploitation sans merci des produits

commerciaux"]

To order the complete compilation report, use: ADA389447

The component part is provided here to allow users access to individually authored sections

of proceedings, annals, symposia, ect. However, the component should be considered within

he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:

ADP010659 thru 'M eVASSIFIED



17-1

The Ruthless Pursuit of the Truth about COTS

Dr. Norman F. Schneidewind
Naval Postgraduate School

2822 Racoon Trail
Pebble Beach

California, 93953, USA
Email: nschneidanps.navy.mil

Abstract commercial markets as opposed to being
developed to a specification for a single customer,

We expose some of the truths about they tend to provide a variety of useful and
COTS, discounting some exaggerated claims desirable features for the market that they are
about the applicability of COTS, particularly with targeted for, at the expense of the specific system
regard to using COTS in safety critical systems. needs in which such products may be used.
Although we agree that COTS has great potential Further, quality and reliability are sometimes not
for reduced development and maintenance time considered critical when time-to-market is a
and cost, we feel that the advocates of COTS have driving requirement. Thus, it is sometimes the
not adequately addressed some critical issues case that these COTS products contain features
concerning reliability, maintainability, and functionality that may not be fully known,
availability, requirements risk analysis, and cost. even to the vendor." [KOH99].
Thus we illuminate these issues, suggesting
solutions in cases where solutions are feasible and Many vendors produce products that are
leaving some questions unanswered because it not domain specific (e.g., network server) or have
appears that the questions cannot be answered due limited functionality (e.g., mobile phone). In
to the inherent limitations of COTS. These contrast, many customers of COTS develop
limitations are present because there is inadequate systems that are domain specific (e.g., target
visibility and documentation of COTS tracking system) and have great variability in
components. functionality (e.g., corporate information system).

This discussion takes the viewpoint of how the
Introduction customer can ensure the quality of COTS

In this paper we analyze three important components. In addition to direct quality
aspects of COTS software: 1) reliability, evaluation, we also consider requirements risk
maintainability, and availability; 2) requirements analysis in a later section, which indirectly affects
risk assessment, using risk factors from the Space quality. We must distinguish between using a non-
Shuttle and modifying them for more general use; mission critical application like a spreadsheet
and 3) cost framework. We are motivated to program to produce a budget and a mission
address these issues because we feel that the critical application like military strategic and
COTS community has not adequately addressed tactical operations. Whereas customers will
some very important questions concerning the tolerate an occasional bug in the former, zero
applicability of COTS when used in a host tolerance is the rule in the latter. We emphasize
system. We define a host system as follows: it the latter because this is the arena where there are
contains both COTS and non-COTS software; the major unresolved problems in the application of
latter is specific to the operational mission of the COTS. Furthermore, COTS components may be
organization; and the mission cannot be satisfied embedded in host systems. These components
entirely by COTS components. Our concerns are must be reliable, maintainable, and available, and
reinforced by Kohl: "The most significant must interoperate with the host system in order for
challenges of V&V of COTS products has to do the customer to benefit from the advertised
with knowledge of the functionality, performance advantages of lower development and
and quality of these products. Because these maintenance costs. Interestingly, when the claims
products tend to be developed for large, of COTS advantages are closely examined, one

Paper presented at the RTO IST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.



17-2

finds that to a great extent these COTS upgraded? A fundamental problem arises in
components consist of hardware and office assessing the reliability of a software component:
products, not mission critical software [CLE97]. a software component will exhibit different

reliability performance in different applications
Obviously, COTS components are different and environments. A COTS component may have

from host components with respect to one or more a favorable reliability rating when operated in
of the following attributes: source, development isolation but a poor one when integrated in a host
paradigm, safety, reliability, maintainability, system. What is needed is the operational profile
availability, security, and other attributes, of COTS components as integrated into the host
However, the important question is whether they system in order to provide some clues as to how to
should be treated differently when deciding to test COTS components. We will assume the
deploy them for operational use; we suggest the worst-case situation that documentation and
answer is no. We use reliability as an example to source code are not available. Thus, inspection
justify our answer. In order to demonstrate its would not be feasible and we would have to rely
reliability, a COTS component must pass the same exclusively on testing and reliability calculations
reliability evaluations as the host components, derived from test data to assess reliability.
otherwise the COTS components will be the
weakest link in the chain of components and will The operational profile identifies the
be the determinant of software system reliability, criticality of components and their duration and
The challenge is that there will be less information frequency of use. Establishing the operational
available for evaluating COTS components than profile leads to a strategy of what to test, with
for host components but this does not mean we what intensity, and for what duration. We must
should despair and do nothing. Actually, there is a recognize that a COTS component must be tested
lot we can do even in the absence of with respect to both its operational profile and the
documentation on COTS components because the operational profile of the host system of which it
customer will have information about how COTS is a part. The COTS component would be treated
components are to be used in the host system. To like a black box for testing purposes similar to a
illustrate our approach, we will consider the host component being delivered by design to
reliability, maintainability, and availability testing but without the documentation. Testing the
(RMA) of COTS components as used in host COTS components according to these operational
systems. profiles will produce failure data that can be used

for two purposes: 1) make an empirical reliability
In addition, COTS suppliers should consider assessment of COTS components in the

increasing visibility into their products to assist environment of the host system and 2) provide
customers in determining the components' fitness data for estimating the parameters of a reliability
for use in a particular application. We offer ideas model for predicting future reliability [SCH97].
about information that would be useful to
customers and what vendors might do to provide A comprehensive software reliability
it. engineering process is described in [ANS93]. As

This paper is organized as follows: reliability, pointed out by Voas, black box and operational
maintainability, availability, requirements risk testing alone may be inadequate [VOA98]. In

analysis, improved visibility into COTS, cost as addition, he advocates using fault injection to
the universal COTS metric, and conclusions, corrupt one component (e.g., COTS component)

to see how well other components (e.g., the host

Reliability system) can tolerate the failed component. While

There are some intriguing questions this approach can identify problems in the
concerning how to evaluate the reliability of software, it cannot fix them withoutCOTSonmiongehow toeaatwe teiliattempty o f answdocumentation. Thus there must be a contract with
COTS components that we will attempt to answer

[SCH991]. Among these are the following: How the vendor that allows the customer to report
do we estimate the reliability of COTS when there problems to the vendor for their resolution.
is no data available from the vendor? How do we Unfortunately, from the customer's standpoint,
estimate the reliability of COTS when it is vendors are unlikely to agree to such an
embedded in a host system? How do we revise arrangement unless the customer has significant
our reliability estimates once COTS has been leverage such as the Federal Government. In the



17-3

case where documentation is available, it would availability using COTS? To attempt to answer
be subjected to a formal inspection of its this question, it is useful to consider hardware as a
understandability and usability. If the frame of reference. The ultimate COTS is
documentation satisfies these criteria, it would be hardware; it has interchangeable and replacement
used as an aid to inspecting any source code that components. Maintenance costs are kept low and
might be available. Next we consider COTS availability is kept high by replacing failed
maintainability issues. components with identical components. Unlike

hardware, availability cannot be kept high by
Maintainability "replacing" the software. A failed component

cannot be replaced because the replacement

In the case of maintainability, there are more component would have the same fault as the failed
intriguing issues. Suppose a problem occurs in a component. Fault tolerant software is a possibility

host system. Is the problem in COTS or in the but it has had limited success. We see that

host software? Suppose it is caused by an availability is a function of reliability and
interaction of the two. The customer knows the maintainability as related by the formula:

problem has occurred, but does not know how to Availability = MTTF/(MTTF+MTTR) =

fix it if there is no documentation. The vendor, not
being on site, does not know the problem has 1/I+(MTTR!MTTF),
occurred. Even the vendor may not know how to
fix the problem if the source of the problem is the where MTTF is mean time to failure and MTTR is
host software or an interaction between it and mean time to repair. MTTF is related to reliability
COTS components. In addition, suppose the and MTTR is related to maintainability. For high
customer needs to upgrade the host software and availability, we want to drive time to failure to
this upgrade is incompatible with the COTS infinity and repair time to zero. However, we
components. Or, conversely, the vendor upgrades have seen from the discussion of reliability and
COTS components and they are no longer maintainability that achieving these objectives is
compatible with the host software. Lastly, suppose problematic. Thus to achieve high availability,
there are no incompatibilities, but the customer either the COTS software must be of high intrinsic
may be forced to install the latest COTS reliability - probably a naive assumption - or
components upgrade in order to continue to there must be in place a strong vendor
receive support from the vendor. None of these maintenance program (this assumption may be
situations can be resolved without either the equally naive). Next we consider COTS visibility
customer having documentation to aid in fixing issues.
the problem, or a contract with the vendor of the
type mentioned above. As in the case of Improved Visibility into COTS
reliability, when neither of these remedies is
available, problems can only be identified but they Major drawbacks of including COTS in a
cannot be fixed. Thus the software cannot be software system are the lack of visibility into how
maintained. An additional factor that impacts both the COTS components were developed and an
reliability and maintainability is that the vendor is incomplete understanding of the components'
unlikely to continue to support the software if the behavioral properties [SCH991]. Without this
customer modifies it. Thus the situation information, it is difficult to assess COTS
degenerates to one in which the customer is totally components to determine their fitness for a
dependent on vendor support to achieve reliability particular application. As suggested by McDermid
and maintainability objectives. This may be in [TAL98], a partial solution might be for COTS
satisfactory for office product applications but it is vendors to identify a set of behavioral properties
unsatisfactory for mission critical applications, that should be satisfied by the software, and then
Next we consider the COTS availability issues, certifying that those properties are satisfied. For

instance, an operating system supplier might
Availability certify that a lower-priority task does not interrupt

a higher priority task as long as the higher priority
High availability is crucial to the success of a task holds the resources required to continue

mission critical system. What will be system processing. COTS vendors might also include the
specifications of those components as well as



17-4

details of verification activities in which those NASA and the development contractor based on
specifications had been used to show that specific assumptions about the risk involved in making
behavioral properties of the software were changes to the software. This formal process is
satisfied. For instance, an effort in progress at the called a risk assessment. No requirements change
Jet Propulsion Laboratory [JPL98] involves is approved by the change control board without
developing libraries of reusable specifications for an accompanying risk assessment. During risk
spacecraft software components using the PVS assessment, the development contractor will
specification language [SR198]. The developers of attempt to answer such questions as: "Is this
the libraries work cooperatively with anticipated change highly complex relative to other software
customers to develop the specifications and changes that have been made on the Shuttle?" If
identify those properties that the components this were the case, a high-risk value would be
should satisfy. As they develop the libraries, the assigned for the complexity criterion. To date this
component developers use the PVS theorem qualitative risk assessment has proven useful for
proverb to show that the behavioral properties are identifying possible risky requirements changes
satisfied by the specification. These proofs are or, conversely, providing assurance that there are
intended to be distributed with the libraries. When no unacceptable risks in making a change.
customers modify the libraries, perhaps to
customize them for a new mission, they will be The following are the definitions of the risk
able to use the accompanying proofs as a basis for factors, where we have placed the factors into
showing that the modified specification exhibits categories and have provided our interpretation of
the desired behavioral properties. Similarly, the question the factor is designed to answer. In
commercial vendors could work with existing and addition, we added the risk factor requirements
potential customers through user groups to specifications techniques because we feel that this
discover those behavioral properties in which one could represent the highest reliability risk of
users are the most interested, and then work to all the factors if a technique leads to
certify that their components satisfy those misunderstanding of the intent of the
properties. Next we present a methodology for requirements. For each of the risk factors, we
analyzing requirements risk when COTS is analyze its appropriateness for COTS. As you will
embedded in a host system. see, this analysis not only determines the

adaptability of the process to COTS, but also
Requirements Risk Analysis exposes some serious issues in the employment of

COTS in any system. For example, the Shuttle
In this section we first describe the Shuttle risk process is all about assessing the risk of

risk management process. Then we consider how requirements changes. In COTS, we would not
it could be modified to accommodate the use of want to attempt changes because we don't have
COTS. In providing this analysis, it should not be the necessary source code and other
inferred that we necessarily advocate the use of documentation. Furthermore, if we did make a
COTS on the Shuttle or on any other safety change, it could invalidate our software license.
critical system. Whether COTS should be This situation illuminates a serious deficiency in
employed would depend upon many using COTS. Therefore, our only recourse, if
environmental and application factors. Rather, our feasible, is to change the host software to reflect
goal is to investigate whether the Shuttle risk the change. In other words, COTS has to be used
analysis process is adaptable to the use of COTS. "as is" in our system. Thus, in what follows, the

risk factors are a function of the change in the
Shuttle Risk Management Process host software and how the change relates to and

can be integrated with COTS.
One of the software development and

maintenance problems of the NASA Space Shuttle In order to modify the Shuttle risk process to
Flight Software organization is to evaluate the risk make it applicable to the use of COTS, we must
of implementing requirements changes. These change the software change metric from lines of
changes can affect the reliability, availability and code to components. In addition, we must change
maintainability of the software. To assess the risk our view of the software from a set of individual
of change, a number of risk factors are used. The instructions to a set of interconnected
risk factors were identified by agreement between components. Otherwise, it would make no sense



17-5

to talk about number of lines of code to be - How many component objects are affected
changed in the host software when we only have by the change?
visibility of COTS at the component level. We Criticality of Change Factors
will also assume an object oriented development
and maintenance paradigm. o Whether the software change is on a nominal or

off-nominal component path (i.e., exception
Requirements Change Risk Factors condition)

The following are the definitions of the - Will a change to an off-nominal component
Shuttle risk factors modified to accommodate the path affect the reliability of the software?
use of COTS, where, as mentioned previously,
only host software components can be changed, o Operational phases affected by the changed
but in making the changes, the relationship with component path (e.g., ascent, orbit, and
COTS components must be considered. If the landing)
answer to a yes/no question is "yes", it means this
is a high-risk change with respect to the given - Will a change to a critical phase of the
factor. If the answer to a question that requires an mission (e.g., ascent and landing) affect the
estimate is an anomalous value, it means this is a reliability of the software?
high-risk change with respect to the given factor.
When a change to a component is mentioned Locality of Change Factors
below, it will be understood to be a change to host
software. o The area of the affected change (i.e., critical

area such as a component path for a mission
Complexity Factors abort sequence)

"o Qualitative assessment of complexity of - Will the change affect objects of
change (e.g., very complex) components that are critical to mission

success?
- Is this change highly complex relative to
other software changes that have been made o Recent changes to components in the area
on the system? What are the interfaces affected by the requirements change
between the host components and COTS
components that are affected by the change? - Will successive changes to the components
Is the change more complex for the host in a given area lead to non-maintainable code?
system than for the host software alone?

o New or existing components that are affected

"o Number of modifications or iterations on the
proposed change - Will a change to new components (i.e., a

change on top of a change) lead to non-
- How many times must the change be maintainable software?

modified or presented to the Change ControlBoard (CCB) before it is approved? o Number of system or hardware failures that
would have to occur before the components

Size Factors that implement the requirement are executed

o Number and types of components affected by - Will the change be on a component path

the change where only a small number of system or
hardware failures would have to occur before

- How many components and types of the changed components are executed ?
components must be changed to implement Requirements Issues and Function Factors
the requirements change?

o Size of software components that are affected
by the change



17-6

o Number and types of other requirements Personnel Resources Factors
affected by the given requirement change
(requirements issues) o Number of inspections of components and

objects required to approve the change
- Are there other requirements that are going
to be affected by this change? If so, these - Will the number and duration of inspections
requirements will have to be resolved before be significant?
implementing the given requirement.

o Manpower required to implement the change
o Possible conflicts among requirements

changes (requirements issues) - Will the manpower required to implement
the software change be significant?

- Will this change conflict with other
requirements changes (e.g., lead to conflicting o Manpower required to verify and validate the
operational scenarios) correctness of the change

o Number of principal software functions and - Will the manpower required to verify and
components affected by the change validate the software change be significant?

- How many major software functions and Tools Factor
components will have to be changed to make
the given change? o Software tools creation or modification

required to implement the change
Performance Factors

- Will the implementation of the change
" Amount of memory required to implement the require the development and testing of new

change tools - for example the development of
component and object testing tools?

- Will the change use memory to the extent
that other functions and components will not o Requirements specifications techniques (e.g.,
have sufficient memory to operate flow diagram, state chart, pseudo code, control
effectively? diagram).

"o Effect on CPU performance - Will the requirements specification method
be difficult to understand and translate into

- Will the change use CPU cycles to the extent components and objects?
that other functions and components will not
have sufficient CPU capacity to operate As an example, Table 1 shows a partial list of the
effectively? risk factors compiled for the for the Shuttle Three

Engine Out Auto Contingency and Single Global
Positioning System requirements changes.

Table I
Change SLOC Complexit Criticality Number of Number of Number of Number of Manpower
Request Changed y of Change Principal Modifications Requirements Inspections Required
Number Rating of Functions Of Change Issues Required to Make

Change Affected Request Change
107734 1933 4 3 27 7 238 12 209.3 MW

Discussion requirements risk analysis to a component
oriented one, it is not clear that the resultant risk

Although we believe we have made a model would be entirely usable because no matter
reasonable translation from a code oriented how we define the software entities of interest, we

still do not have equal visibility of the host



17-7

software and COTS. We suggest this is a features than the former. Due to the difficulty of
fundamental problem that has not been solved by identifying specific COTS-related costs, our initial
COTS advocates, particularly for safety critical approach is to identify cost elements on the
systems. Next we present a framework for ordinal scale. Thus, the first version of the
identifying and analyzing the cost of COTS. decision matrix would involve ordinal scale

metrics (i.e., the cost of unreliability is more
Cost as the Universal COTS Metric important for flight control software than for

spreadsheet applications). As the field of COTS
We focus on factors that the user should analysis matures and as additional data is

consider when deciding whether to use COTS collected about the cost of using COTS, we will
software [SCH992]. We take the approach of be able to refine our metrics to the ratio scale
using the common denominator cost. This is done (e.g., the cost of unreliability in a host system is
for two reasons: first, cost is obviously of interest two times that in a commercial COTS system).
in making such decisions and second a single
metric - cost in dollars - can be used for The cost elements for comparing COTS
evaluating the pros and cons of using COTS. The software with in-house software are identified
reason is that various software system attributes, below. This list is not exhaustive; its purpose is to
like acquisition cost and availability (i.e., the illustrate the approach. These elements apply
percentage of scheduled operating time that the whether we are comparing a system comprised of
system is available for use), are non- all COTS components with all in-house
commensurate quantities. That is, we cannot relate components or comparing only a subset of COTS
quantitatively "a low acquisition cost" with "high components with corresponding in-house
availability". These units are neither additive nor components. Explanatory comments are made
multiplicative. However, if it were possible to where necessary. Mean values are used for some
translate availability into either a cost gain or loss quantities in the initial framework. This is the case
for COTS software, we could operate on these because it will be a challenge to collect any data
metrics mathematically. Naturally, in addition to for some applications. Therefore, the initial
cost, the user application is key in making the framework should not be overly complex.
decision. Thus one could develop a matrix where Variance and statistical distribution information
one dimension is application and the other could be included as enhancements if the initial
dimension is the various cost elements. We show framework proves successful.
how cost elements can be identified and how cost
comparisons can be made over the life of the Cost Elements
software. Obviously, identifying the costs would
not be easy. The user would have to do a lot of CO) = Cost of acquiring COTS software in yearj.
work to set up the decision matrix but once it was
constructed, it would be a significant tool in the Ci(j) = Cost of developing in-house software in
evaluation of COTS. Furthermore, even if all the year j.
required data cannot be collected, having a
framework that defines software system attributes Uýjj) = Cost of upgrading COTS software in year
would serve as a user guide for factors to consider j.
when making the decision about whether to use
COTS software or in-house developed software. Ui(j) = Cost of upgrading in-house software in
Note that host software could be developed either yearj.
in-house or under contract. If the former, the in-
house cost element below apply to host software. PO) = Cost of personnel who use the software

system in year j. This quantity represents the
Certainly, different applications would have value to the customer of using the software

varying degrees of relationships with the cost system.
elements. For example, flight control software
would have a stronger relationship with the cost of Mc(j) = Cost per unit time of repairing a fault in
unavailability than a spreadsheet application. COTS software in year j. This is the cost of
Conversely, the latter would have a stronger customer time involved in resolving a problem
relationship with the cost of inadequacy of tool with the vendor.



17-8

Mi(j) = Cost per unit time of repairing a fault in Annual cost of the in-house software being
in-house software in year j. unavailable for use = (I -Aio)) * Po).

RPj) = Mean time of repairing a fault that causes a Difference in annual cost =
failure in COTS software in year j. This is the Po) * (Ai(j) - A,(j)) (3)
average time that the user spends in resolving a
problem with the vendor. Cost of Repairing Software

Rio) = Mean time of repairing a fault that causes a Average annual cost of repairing failed COTS
failure in in-house software in year j. software = Ff0) * TO) * t() * Me~o).

TO) = Scheduled operating time for the software Average annual cost of repairing failed in-house
system in year j. software = FiP) * TO) * Rio) * Mi(j).

ACo) = Availability of software system that uses Difference in annual cost
COTS software in year j.

TO) * ((F:(j) * &0(j) * M~o)) - ((Fio) * Rio) *

Aio) = Availability of software system that uses Mio)) (4)
software developed in-house in year j.

Then, TCj, total difference in cost in year j, is the
These quantities are the fractions of TO) that the sum of (1), (2), (3), and (4). Because there is the
software system is available for use. opportunity to invest funds in alternate projects,

costs in different years are not equivalent (i.e.,
FCo) = Failure rate of COTS software in yearj. funds available today have more value than an

equal amount in the future because they could be
F1o) = Failure rate of in-house software in year j. invested today and earn a future return).

Therefore, a stream of costs over the life of the
These quantities are the number of failures per software for n years must be discounted by k, the
year that cause loss of productivity and rate of return on alternate use of funds. Thus the
availability of the software system. total discounted cost differential between COTS

software and in-house software is:
In some applications, some or all of the

above quantities may be known or assumed to be yn TC1(1 + k)j
constant over the life of the software system.

Using the above cost elements, we derive the In this initial formulation, we have not
equations for the annual costs of the two systems included possible differences in functionality
and the difference in these costs. In the cost between the two approaches. However, a
difference calculations that follow, a positive reasonable assumption is that COTS software
quantity is favorable to in-house development and would not be considered unless it could provide
a negative quantity is favorable to COTS. minimum functionality to satisfy user

Cost of Acquiring Software requirements. Thus, a typical decision for the useris whether it is worth the additional life cycle

costs to develop an in-house software system with
Difference in annual cost =C•(j) - Cij) (1) all the desirable attributes.

Cost of Upgrading Software Conclusions

Difference in annual cost = Uco) - Uio) (2) The decision to employ COTS on mission

critical systems should not be based on
Cost of Software being Unavailable for Use development cost alone. Rather, costs should be

evaluated on a total life cycle basis and RMA
Annual cost of COTS software being unavailable should be evaluated in a system context (i.e.,
for use = (1-AGOj)) * P0j).



17-9

COTS components embedded in a host system). [SCH97] Norman F. Schneidewind, "Reliability
COTS suppliers should also consider making Modeling for Safety Critical Software", IEEE
available more detailed information regarding the Transactions on Reliability, Vol. 46, No. 1, March
behavior of their systems, and certifying that their 1997, pp. 8 8 -9 8 .
components satisfy a specified set of behavioral
properties. In addition, a formal risk assessment of [SCH991] Norman F. Schneidewind and Allen P.
requirements should be performed taking into Nikora, "Issues and Methods for Assessing COTS
account the characteristics of host system Reliability, Maintainability, and Availability",
environments. Proceedings of the First Workshop on Ensuring

References Successful COTS Development, 21 st International
Conference on Software Engineering, Los

[ANS93] Recommended Practice for Software Angeles, California, May 22nd, 1999, 4 pages.
Reliability, R-013-1992, American National
Standards Institute/American Institute of [SCH992] Norman F. Schneidewind, "Cost
Aeronautics and Astronautics, 370 L'Enfant Framework for COTS Evaluation", Proceedings
Promenade, SW, Washington, DC 20024, 1993. of COMPSAC 99, Phoenix, AZ, 27 October

1999, pp. 100-101.

[CLE97] Clemins, Archie, "IT-21: The Path to [SR198] "The PVS Specification and Verification
Information Superiority." CHIPS Jul 1997, System", SRI International Computer Science
http://www.chips.navy.mil/chips/archives/97 jul/ Laboratory, http://www.csl.sri.com/sri-csl-
ile.htm, p. 1. pvs.html, 1998.

[JPL98] "Reusable Libraries of Formal [TAL98] Nancy Talbert, "The Cost of COTS",
Specifications", NASA Formal Methods web site, IEEE Computer, Vol. 31, No. 6, June 1998, pp.
http://eis.jpl.nasa.gov/quality/Formal Methods/lib 46-52.
rary.html, 1998.

[VOA98] Jeffrey M. Voas, "Certifying Off-the-
[KOH99] Ronald J. Kohl, "V&V of COTS Shelf Software Components", IEEE Computer,
Dormant Code: Challenges and Issues", Vol. 31, No. 6, June 1998, pp. 53-59.
Proceedings of the First Workshop on Ensuring
Successful COTS Development, 21 st International
Conference on Software Engineering, Los
Angeles, California, May 22nd, 1999, 2 pages.


